Biosciences Graduate Program

Justin L. Grobe, PhD

Portrait

Assistant Professor of Pharmacology

Contact Information

Primary Office: 2-307 Bowen Science Building
Iowa City, IA 52242
Primary Office Phone: 319-353-5789

Lab: 2-300 Bowen Science Building
Iowa City, IA 52242
Phone: 319-353-5803

Email: justin-grobe@uiowa.edu
Web: Department of Pharmacology

Education

BA, Biology and Chemistry, Hope College, Holland, MI
BS, Biology and Chemistry, Hope College, Holland, MI
PhD, Pharmacodynamics, University of Florida, Gainesville, FL

Postdoctoral Fellow, University of Florida College of Medicine, Gainesville, FL, Physiology and Functional Genomics
Postdoctoral Fellow, University of Iowa Carver College of Medicine, Internal Medicine (8/26-6/10) & Pharmacology (7/10-10/10)

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Pharmacology Graduate Program
Interdisciplinary Graduate Program in Molecular and Cellular Biology
Interdisciplinary Graduate Program in Neuroscience
Medical Scientist Training Program

Research Summary

My laboratory is generally focused on understanding neural control of cardiovascular and metabolic function. We employ a wide range of pharmacological and physiological methods, along with new genetically-modified animal models of health and disease. We currently focus on four major areas of inquiry:

1. The control of cardiovascular and metabolic function by the brain renin-angiotensin system. The renin-angiotensin system, a circulating hormone system that is very important for blood pressure control, is used in various tissues (e.g. - kidney, heart, adipose, brain) for paracrine/autocrine/intracrine signaling. One of our projects is aimed at mapping the neural circuitry that underlies the control of blood pressure and metabolic rate. Greater understanding of these mechanisms should lead to the development of novel therapeutics for obesity and obesity-hypertension.

2. The regulation of resting metabolic rate by the adipose renin-angiotensin system. Angiotensin peptides within adipose tissues act to suppress resting metabolic rate. We are working to clarify the effects of angiotensin peptides upon adipose tissue function, and the mechanisms involved. Clarification of these mechanisms may lead to completely new classes of anti-obesity therapeutics, which work through the stimulation of resting metabolic rate (a superior method, for which there are currently no safe drug options).

3. Improving methods of assessing resting metabolic rate in vivo / role of the gut microbiome in energy balance. Previously we recognized a need for improved methods to assess resting metabolic rate, as conventional methods (respirometry) are plagued with various shortcomings. Using advanced methods (combined direct calorimetry and respirometry) we have developed a method to assess non-aerobic metabolic processes in vivo, and determined that various interventions (anesthesia, modulation of angiotensin receptors, and high fat diet) differentially modulate aerobic vs. non-aerobic processes. Ongoing work is aimed at clarifying mechanisms by which the gut microbiome controls non-aerobic resting metabolism, and continuing development of superior technologies for metabolic assessment.

4. Investigating the role of vasopressin in the pathogenesis of preeclampsia. Preeclampsia is a cardiovascular disorder of late pregnancy that includes sudden increases in blood pressure, renal damage, and fetal damage. We recently discovered that elevated arginine vasopressin secretion is a useful very-early diagnostic for this disorder in humans, and infusion of this hormone can model the disorder in mice. Ongoing studies are designed to identify the causes for increased vasopressin secretion, and the receptors involved, to develop novel drugs to prevent or treat this disorder.

Center, Program and Institute Affiliations

Cardiovascular Research Center
Center for Functional Genomics of Hypertension
Fraternal Order of Eagles Diabetes Research Center
Obesity Initiative

Selected Publications

Show All

Santillan M, Santillan D, Scroggins S, Min J, Sandgren J, Pearson N, Leslie K, Hunter S, Zamba G, Gibson-Corley K, Grobe J.  Vasopressin in Preeclampsia: A Novel Very-Early Human Pregnancy Biomarker and Clinically-Relevant Mouse Model..  Hypertension.  2014 October. 64(4):852-859.
[PubMed]

Burnett C, Grobe J.  Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry.  Molecular Metabolism.  2014. 3:460-464.
[PubMed]

Burnett C, Grobe J.  Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice.  American Journal of Physiology: Endocrinology & Metabolism.  2013. 305(7):E916-E924.
[PubMed]

Littlejohn N, Siel, Jr. R, Ketasawatsomkron P, Pelham C, Pearson N, Hilzendeger A, Buehrer B, Weidemann B, Li H, Davis D, Thompson A, Liu X, Cassell M, Sigmund C, Grobe J.  Hypertension in Mice with Transgenic Activation of the Brain Renin-Angiotensin System is Vasopressin-Dependent.  American Journal of Physiology: Regulatory, Integrative & Comparative Physiology.  2013. 304(10):R818-R828.
[PubMed]

Grobe J, Rahmouni K, Liu X, Sigmund C.  Metabolic rate regulation by the renin-angiotensin system: brain vs. body..  Pflugers Arch - European J of Physiology.  2013 January. 465(1):167-175.
[Link]

Hilzendeger A, Morgan D, Brooks L, Dellsperger D, Liu X, Grobe J, Rahmouni K, Sigmund C, Mark A.  A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity.  Am J Physiol Heart Circ Physiol.  2012 July 15. 303(2):H197-H206.
[Link]

Xu D, Borges G, Davis D, Agassandian K, Sequeira Lopez M, Gomez R, Cassell M, Grobe J, Sigmund C.  Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism.  Physiol Genomics.  2011 March 29. 43(6):286-294.
[Link]

Grobe J, Buehrer B, Hilzendeger A, Liu X, Davis D, Xu D, Sigmund C.  Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice.  Hypertension.  2011 March. 57[Part 2}(3):600-607.
[Link]

Grobe J, Grobe C, Beltz T, Westphal S, Morgan D, Xu D, de Lange W, Li H, Sakai K, Thedens D, Cassis L, Rahmouni K, Mark A, Johnson A, Sigmund C.  The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance.  Cell Metabolism.  2010 November 3. 12(5):431-442.
[Link]

Xu D, Borges G, Grobe J, Pelham C, Yang B, Sigmund C.  Preservation of intracellular renin expression is insufficient to compensate for genetic loss of secreted renin.  Hypertension.  2009 December. 54(6):1240-1247.
[Link]

Date Last Modified: 11/18/2014 - 10:15:00