Biosciences Graduate Program

Brandon S. Davies, PhD

Portrait

Assistant Professor of Biochemistry

Contact Information

Office: 4-370 BSB
Iowa City, IA 52242
Office Phone: 319-335-3225

Lab: 4-303 BSB
Iowa City, IA 52242
Phone: 319-335-3228

Email: brandon-davies@uiowa.edu
Web: Davies Laboratory

Education

Honors BA, Biology and English, University of Utah
PhD, Molecular and Cell Biology, University of California, Berkeley
Post-doctoral fellow, Cardiology, University of California, Los Angeles

Post Doctoral, Lipid Metabolism, University of California, Los Angeles

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Biochemistry PhD
Interdisciplinary Graduate Program in Molecular and Cellular Biology
Medical Scientist Training Program

Research Summary

Our lab studies the role of endothelial cells in lipid metabolism. The lipolytic processing of triglyceride-rich lipoproteins in the bloodstream by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism. Acting inside capillaries, LPL cleaves lipoprotein triglycerides, releasing fatty acids that are taken up by tissues and either used for fuel or stored in cytosolic lipid droplets. LPL is synthesized by parenchymal cells (e.g. myocytes and adipocytes) and secreted into the interstitial spaces, but to be functional in processing triglycerides in the plasma, it must be transported to the capillary lumen. The endothelial cell protein GPIHBP1 serves as the LPL transporter, capturing LPL and moving it across endothelial cells to the capillary lumen. When GPIHBP1 is absent, LPL cannot reach the capillary lumen, leading to severe hypertriglyceridemia (in both humans and mice).

The identification of GPIHBP1 as the LPL transporter provided novel evidence that endothelial cells play an active role in plasma lipid metabolism. Maintaining metabolic homeostasis requires moving nutrients, hormones, and enzymes across capillary endothelial cells. Yet, how endothelial cell function is controlled so that metabolic activity inside capillaries and the delivery of nutrients across endothelial cells matches the needs of the underlying tissues has not been adequately explored. To address this issue, we study the mechanisms and regulation of trans-endothelial transport as it relates to lipid metabolism. We also study how the expression of capillary specific proteins, such as GPIHBP1, is controlled in an effort to learn how the metabolic needs of specific tissues influence gene expression in the capillaries servicing those tissues.

Visit Google Scholar for all of Dr. Brandon Davies's publications.

Center, Program and Institute Affiliations

Fraternal Order of Eagles Diabetes Research Center
Obesity Initiative

Selected Publications

Show All

Davies B, Goulbourne C, Barnes R, Turlo K, Gin P, Vaughan S, Vaux D, Bensadoun A, Beigneux A, Fong L, Young S.  Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells.  Journal of lipid research.  2012 December. 53(12):2690-7.
[PubMed]

Davies B, Beigneux A, Fong L, Young S.  New wrinkles in lipoprotein lipase biology.  Current opinion in lipidology.  2012 February. 23(1):35-42.
[PubMed]

Jung H, Coffinier C, Choe Y, Beigneux A, Davies B, Yang S, Barnes R, Hong J, Sun T, Pleasure S, Young S, Fong L.  Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA.  Proceedings of the National Academy of Sciences of the United States of America.  2012 February. 109(7):E423-31.
[PubMed]

Beigneux A, Davies B, Tat S, Chen J, Gin P, Voss C, Weinstein M, Bensadoun A, Pullinger C, Fong L, Young S.  Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase.  The Journal of biological chemistry.  2011 June. 286(22):19735-43.
[PubMed]

Voss C, Davies B, Tat S, Gin P, Fong L, Pelletier C, Mottler C, Bensadoun A, Beigneux A, Young S.  Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1.  Proceedings of the National Academy of Sciences of the United States of America.  2011 May. 108(19):7980-4.
[PubMed]

Davies B, Coffinier C, Yang S, barnes R, Jung H, young S.  Investigating the purpose of prelamin a processing.  Nucleus.  2011. 2:9-Apr.

Davies B, Barnes R, Tu Y, Ren S, Andres D, Spielmann H, Lammerding J, Wang Y, Young S, Fong L.  An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria.  Human molecular genetics.  2010 July. 19(13):2682-94.
[PubMed]

Davies B, Beigneux A, Barnes R, Tu Y, Gin P, Weinstein M, Nobumori C, Nyrén R, Goldberg I, Olivecrona G, Bensadoun A, Young S, Fong L.  GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries.  Cell metabolism.  2010 July. 12(1):42-52.
[PubMed]

Davies B, Fong L, Yang S, Coffinier C, Young S.  The posttranslational processing of prelamin A and disease.  Annual review of genomics and human genetics.  2009. 10:153-74.
[PubMed]

Davies B, Waki H, Beigneux A, Farber E, Weinstein M, Wilpitz D, Tai L, Evans R, Fong L, Tontonoz P, Young S.  The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by peroxisome proliferator-activated receptor-gamma.  Molecular endocrinology (Baltimore, Md.).  2008 November. 22(11):2496-504.
[PubMed]

Date Last Modified: 06/07/2014 - 21:56:23