Otolaryngology—Head and Neck Surgery

Steven H. Green, BS, PhD

Portrait

Professor of Biology
Professor of Otolaryngology

Contact Information

Office: 238 BBE
Iowa City, IA 52242
Office Phone: 319-335-1612

Email: steven-green@uiowa.edu
Web: More About Dr. Green - Related Websites and Resources

Education

BS, Biochemistry, University of Wisconsin-Madison
PhD, Biology, California Institute of Technology

Education/Training Program Affiliations

Biosciences Graduate Program
Interdisciplinary Graduate Program in Molecular and Cellular Biology
Interdisciplinary Graduate Program in Neuroscience
Interdisciplinary Graduate Program in Translational Biomedicine
Medical Scientist Training Program

Research Summary

We investigate the molecular and cellular mechanisms by which synaptic activity affects neuronal survival and the formation and stability of synapses. This investigation involves several distinct but overlapping projects. We use the auditory system for most of these projects because it is especially suitable for investigation of the role of synaptic activity in regulating neuronal survival and synapses. Activity in the cochlea (the auditory portion of the inner ear) depends entirely on the auditory sensory cells (“hair cells”). Hair cells can be selectively killed by administration of aminoglycoside antibiotics, allowing investigation of the consequence to the cochlear neurons (also called “spiral ganglion neurons”) of loss of their sole input. The loss of hair cells results in a rapid loss of the synaptic structure of the spiral ganglion neurons (SGNs), followed by gradual death of the SGNs. Several projects in the lab investigate molecular events in the SGNs following hair cell loss. These studies use a combination of techniques to identify those molecular events directly related to neuronal survival and death. These include in vivo studies of rats in which the intracochlear environment is manipulated and of transgenic mice. To complement these in vivo studies, we use physiological, biochemical, and gene transfer techniques for experimental studies of cultured rat and mouse SGNs. Taking advantage of our ability to perturb hearing in animals and to experimentally manipulate neurons using molecular and genetic techniques, we also investigate the role of activity and neurotrophic factors in synapse formation in the developing auditory cortex in the brain. In collaboration with other investigators at UI, we conduct parallel studies on other brain regions. Our studies of the role of neural activity in the cochlea are directly relevant to the cochlear implant, a highly effective neural prosthesis that is currently the only treatment for deafness.

Center, Program and Institute Affiliations

Center for Auditory Regeneration and Deafness

Date Last Modified: 06/07/2014 - 21:56:23