Microbiology

David S. Weiss, PhD

Portrait

Associate Professor of Microbiology

Contact Information

Office: 3-372 Bowen Science Building
51 Newton Rd
Iowa City, IA 52242
Office Phone: 319-335-7785

Lab: 3-303 Bowen Science Building
51 Newton Rd
Iowa City, IA 52242
Phone: 319-335-7944

Email: david-weiss@uiowa.edu
Web: Weiss Lab Website

Education

No degree, Deep Springs College
BA, Biology , Swarthmore College
PhD, Microbiology, University of California, Berkeley

Post Doctoral, Microbiology, Max-Planck-Institute for Terrestrial Microbiology, Germany
Post Doctoral, Microbiology, Harvard Medical School

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Microbiology Graduate Program
Interdisciplinary Graduate Program in Genetics

Research Summary

Background: We use bacteria as model organisms for addressing one of the most fundamental problems in cell biology -- How do cells divide? More specifically, we want to know how the division septum is formed and how its formation is regulated. Another objective is to understand how proteins are targeted to specific subcellular sites, especially how cell division proteins localize to the midcell.

Recent Results: We have approached these issues by screening for and/or characterizing new cell division proteins of Escherichia coli. This led to the identification of three new division proteins named DamX, DedD and RlpA. All three proteins contain a C-terminal "SPOR" domain that binds to the peptidoglycan cell wall. Surprisingly, we found that the SPOR domain alone is able to localize to the midcell. We think SPOR domains must be binding to a special peptidoglycan form (or structure) in the division septum. Figuring out what that structure is might provide important new insights concerning peptidoglycan synthesis during cell division.

Future Directions: The questions we are addressing now include: What sequences in SPOR domains specify septal localization? What is the unique feature of septal peptidoglycan that SPOR domains recognize? What role do the SPOR domain proteins play in cell division? What are the roles of SPOR domain proteins in other bacteria? In this regard, it is important to note that SPOR domain proteins are found in hundreds of bacterial species, including many important pathogens.

Significance: A better understanding of cell division and protein localization in E. coli might shed light on these processes in other organisms. In addition, our studies might lead to more knowledge-based approaches to developing new antibiotics.

Center, Program and Institute Affiliations

Center for Biocatalysis and Bioprocessing

All Publications

Jorgenson M, Chen Y, Yahashiri A, Popham D, Weiss D.  The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa.  Mol Microbiol.  2014 July. 93(1):113-28.
[Link]

Ransom E, Williams K, Weiss D, Ellermeier C.  Identification and Characterization of a Gene Cluster Required for Proper Rod Shape, Cell Division, and Pathogenesis in Clostridium difficile.  J Bacteriol.  2014 June 15. 196(12):2290-300.
[Link]

Söderström B, Skoog K, Blom H, Weiss D, von Heijne G, Daley D.  Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization.  Mol Microbiol.  2014 April. 92(1):1-9.
[Link]

Hall J, Stedman K, Weiss D.  Obituary for Sydney Kustu.  Microbe.  2014. 

Duncan T, Yahashiri A, Arends S, Popham D, Weiss D.  Identification of SPOR domain amino acids important for septal localization, peptidoglycan binding, and a disulfide bond in the cell division protein FtsN.  J Bacteriol.  2013 December. 195(23):5308-15.
[Link]

Weiss D.  Escherichia coli shapeshifters.  J Bacteriol.  2013 June. 195(11):2449-51.
[Link]

Williams K, Yahashiri A, Arends S, Popham D, Fowler C, Weiss D.  Nuclear Magnetic Resonance Solution Structure of the Peptidoglycan-Binding SPOR Domain from Escherichia coli DamX: Insights into Septal Localization.  Biochemistry.  2013 January 4. 52(4):627-39.
[Link]

Gode-Potratz C, Kustusch R, Breheny P, Weiss D, McCarter L.  Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence.  Mol Microbiol.  2011 January. 79(1):240-63.
[Link]

Arends S, Williams K, Scott R, Rolong S, Popham D, Weiss D.  Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA.  J Bacteriol.  2010 January. 192(1):242-55.
[Link]

Arends S, Kustusch R, Weiss D.  ATP-binding site lesions in FtsE impair cell division.  J Bacteriol.  2009 June. 191(12):3772-84.
[Link]

Tarry M, Arends S, Roversi P, Piette E, Sargent F, Berks B, Weiss D, Lea S.  The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure.  J Mol Biol.  2009 February 20. 386(2):504-19.
[Link]

Arends S, Williams K, Kustusch R, Weiss D.  Cell Division.  ASM Press, Washington, DC.  2007. 

Wang S, Arends S, Weiss D, Newman E.  A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12.  Mol Microbiol.  2005 November. 58(3):791-9.
[Link]

Wissel M, Wendt J, Mitchell C, Weiss D.  The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring.  J Bacteriol.  2005 January. 187(1):320-8.
[Link]

Weiss D.  Bacterial cell division and the septal ring.  Mol Microbiol.  2004 November. 54(3):588-97.
[Link]

Schmidt K, Peterson N, Kustusch R, Wissel M, Graham B, Phillips G, Weiss D.  A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli.  J Bacteriol.  2004 February. 186(3):785-93.
[Link]

Arends S, Weiss D.  Inhibiting cell division in Escherichia coli has little if any effect on gene expression.  J Bacteriol.  2004 February. 186(3):880-4.
[Link]

Wissel M, Weiss D.  Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN.  J Bacteriol.  2004 January. 186(2):490-502.
[Link]

Eberhardt C, Kuerschner L, Weiss D.  Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams.  J Bacteriol.  2003 July. 185(13):3726-34.
[Link]

Mercer K, Weiss D.  The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site.  J Bacteriol.  2002 February. 184(4):904-12.
[Link]

Wissel M, Blair J, Weiss D.  Identification of amino acids involved in targeting the E. coli cell division protein FtsI to the division site.  Molecular Genetics of Bacteria and Phages Meeting, Madison, WI.  2001 August. 

Boyd D, Weiss D, Chen J, Beckwith J.  Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system.  J Bacteriol.  2000 February. 182(3):842-7.
[Link]

Weiss D, Chen J, Ghigo J, Boyd D, Beckwith J.  Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL.  J Bacteriol.  1999 January. 181(2):508-20.
[Link]

Ghigo J, Weiss D, Chen J, Yarrow J, Beckwith J.  Localization of FtsL to the Escherichia coli septal ring.  Mol Microbiol.  1999 January. 31(2):725-37.
[Link]

Chen J, Weiss D, Ghigo J, Beckwith J.  Septal localization of FtsQ, an essential cell division protein in Escherichia coli.  J Bacteriol.  1999 January. 181(2):521-30.
[Link]

Guzman L, Weiss D, Beckwith J.  Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli.  J Bacteriol.  1997 August. 179(16):5094-103.
[Link]

Weiss D, Pogliano K, Carson M, Guzman L, Fraipont C, Nguyen-Distèche M, Losick R, Beckwith J.  Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole.  Mol Microbiol.  1997 August. 25(4):671-81.
[Link]

Pogliano J, Pogliano K, Weiss D, Losick R, Beckwith J.  Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites.  Proc Natl Acad Sci U S A.  1997 January 21. 94(2):559-64.
[Link]

North A, Weiss D, Suzuki H, Flashner Y, Kustu S.  Repressor forms of the enhancer-binding protein NrtC: some fail in coupling ATP hydrolysis to open complex formation by sigma 54-holoenzyme.  J Mol Biol.  1996 July 19. 260(3):317-31.
[Link]

Hungerer C, Weiss D, Thauer R, Jahn D.  The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg.  Bioorg Med Chem.  1996 July. 4(7):1089-95.
[Link]

Flashner Y, Weiss D, Keener J, Kustu S.  Constitutive forms of the enhancer-binding protein NtrC: evidence that essential oligomerization determinants lie in the central activation domain.  J Mol Biol.  1995 June 16. 249(4):700-13.
[Link]

Shima S, Weiss D, Thauer R.  Formylmethanofuran:tetrahydromethanopterin formyltransferase (Ftr) from the hyperthermophilic Methanopyrus kandleri. Cloning, sequencing and functional expression of the ftr gene and one-step purification of the enzyme overproduced in Escherichia coli.  Eur J Biochem.  1995 June 15. 230(3):906-13.
[Link]

Harms U, Weiss D, Gärtner P, Linder D, Thauer R.  The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits.  Eur J Biochem.  1995 March 15. 228(3):640-8.
[Link]

Weiss D, Gärtner P, Thauer R.  The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor.  Eur J Biochem.  1994 December 15. 226(3):799-809.
[Link]

Gärtner P, Weiss D, Harms U, Thauer R.  N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence.  Eur J Biochem.  1994 December 1. 226(2):465-72.
[Link]

Klose K, Weiss D, Kustu S.  Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein.  J Mol Biol.  1993 July 5. 232(1):67-78.
[Link]

Weiss D, Thauer R.  Methanogenesis and the unity of biochemistry.  Cell.  1993 March 26. 72(6):819-22.
[Link]

Weiss D, Klose K, Hoover T, North A, Porter S, Wedel A, Kustu S.  Prokaryotic transcriptional enhancers.  Cold Spring Harbor Laboratory Press.  1992. 

Kustu S, North A, Weiss D.  Prokaryotic transcriptional enhancers and enhancer-binding proteins.  Trends Biochem Sci.  1991 November. 16(11):397-402.
[Link]

Weiss D, Batut J, Klose K, Keener J, Kustu S.  The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription.  Cell.  1991 October 4. 67(1):155-67.
[Link]

Wedel A, Weiss D, Popham D, Dröge P, Kustu S.  A bacterial enhancer functions to tether a transcriptional activator near a promoter.  Science.  1990 April 27. 248(4954):486-90.
[Link]

Kustu S, Santero E, Keener J, Popham D, Weiss D.  Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism.  Microbiol Rev.  1989 September. 53(3):367-76.
[Link]

Date Last Modified: 06/07/2014 - 21:56:23