Internal Medicine

Charles Brenner, PhD

Portrait

Professor of Biochemistry
Professor of Internal Medicine

Contact Information

Primary Office: 4-403 BSB
Iowa City, IA 52242
Primary Office Phone: 319-335-7934

Lab: 4-339 BSB
Iowa City, IA 52242
Phone: 319-384-4099

Email: charles-brenner@uiowa.edu
Web: Brenner Laboratory
Web: Google Scholar Citations

Education

BA with honors, Biology, Wesleyan University, Middletown, CT
PhD, Cancer Biology, Stanford University, Stanford, CA

Post Doctoral, X-Ray Crystallography, Brandeis University, Waltham, MA

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Biochemistry PhD
Interdisciplinary Graduate Program in Genetics
Interdisciplinary Graduate Program in Molecular and Cellular Biology
Interdisciplinary Graduate Program in Translational Biomedicine
Medical Scientist Training Program

Research Summary

Cellular function and differentiation depend on an ability to read environmental cues and to execute a gene expression program that is appropriate to time, place and context. Nutrient availability is among the most important signals to which cells respond. Importantly, nutrients are not only transmitted from outside an organism, i.e., by feeding, but are also transmitted from cell to cell and from tissue to tissue. Metabolic control of gene expression is critical to the maintenance of cellular longevity. Dysregulation of the nutritional control of gene expression underlies a series of conditions including nondetection of satiety, which can lead to obesity and diabetes, and diseases such as cancer. Our laboratory is engaged in several projects that dissect specific problems in the metabolic control of gene expression. In particular, we are interested in how changing environmental conditions lead to reversible transfer of two carbon, i.e. acetyl, and one carbon, i.e. methyl, groups to proteins and DNA, respectively. These processes are fundamentally important because two carbon transfers link carbohydrate and fat metabolism to nicotinamide adenine dinucleotide (NAD) biosynthesis and because one carbon transfers link the folate cycle and methionine biosynthesis to S-adenosyl methionine metabolism. Trainees in our group are engaged in interdisciplinary projects, performing protein purification, enzymology, structural biology, yeast and somatic cell genetics, genomics, and chemical biology.

Center, Program and Institute Affiliations

Center for Biocatalysis and Bioprocessing
Fraternal Order of Eagles Diabetes Research Center
Holden Comprehensive Cancer Center
Obesity Initiative

All Publications

Boylston J, Brenner C.  A Knockdown with Smoke Model Reveals Fhit as a Repressor of Heme Oxygenase 1.  Cell Cycle.  2014. 13:2913-30.

Brenner C.  Histidine Triad Superfamily (version 2.0).  Encyclopedia of Life Sciences.  2014. 
[Link]

Brenner C.  Metabolism: Targeting a fat-accumulation gene.  Nature.  2014. 508:194-195.
[PubMed]

Mei S, Brenner C.  Quantification of Protein Copy Number in Yeast: the NAD+ Metabolome.  PLoS One.  2014. 9:e106496.
[PubMed]

Wu B, Mei S, Brenner C.  RFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation.  Cell Cycle.  2014. 13.

Wu B, Mei S, Brenner C.  Suppression of TET1-Dependent DNA Demethylation is Essential for KRAS-Mediated Transformation.  Cell Reports.  2014. 9.

Brenner C.  Understanding faculty salaries.  ASBMB Today.  2014. 13:28-29.
[Link]

Fagan R, Wu M, Chedin F, Brenner C.  An ultrasensitive high throughput screen for DNA methyltransferase 1-targeted molecular probes.  PLoS One.  2013 November. 8(11):e78752.
[PubMed]

Mei S, Brenner C.  NAD as a Genotype-Specific Drug Target.  Chem Biol.  2013 November. 20(11):1307-8.
[PubMed]

Kennelly P, Bond J, Masters B, Brenner C, Raben D.  Desperately seeking Flexner: time to reemphasize basic science in medical education.  Acad Med.  2013 October. 88(10):1405-6.
[PubMed]

Fagan R, Cryderman D, Kopelovich L, Wallrath L, Brenner C.  Laccaic Acid A is a Direct, DNA-Competitive Inhibitor of DNA Methyltransferase 1.  The Journal of biological chemistry.  2013 July. 
[PubMed]

Bogan K, Brenner C.  Biochemistry: Niacin and NAD(P).  Encyclopedia of Biological Chemistry.  2013. 3:172-178.

Brenner C.  Changes in chemistry and biochemistry education: creative responses to medical college admissions test revisions in the age of the genome.  Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.  2013. 41(1):1-4.
[PubMed]

Brenner C,  .  Demystifying the Chalk Talk.  ASBMB Today.  2013. 12(8):33-35.

Ghanta S, Grossmann R, Brenner C.  Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.  Critical Rev Biochem & Mol Biol.  2013. 48:561-574.
[PubMed]

Brenner C.  Rethinking Premedical and Health Professional Curricula in Light of MCAT 2015.  Journal of Chemical Education.  2013. 90.

Huang J, Stewart A, Maity B, Hagen J, Fagan R, Yang J, Quelle D, Brenner C, Fisher R.  RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis.  Oncogene.  2013. 33(27):3604-11.
[PubMed]

Trammell S, Brenner C.  Targeted, LCMC-based Metabolomics for Quantitative Measurement of NAD+ Metabolites.  Computational and Structural Biotechnology Journal.  2013. 4:e201301012.

Midtkandal R, Redpath P, Trammell S, Macdonald S, Brenner C, Migaud M.  Novel synthetic route to the C-nucleoside, 2-deoxy benzamide riboside.  Bioorganic & medicinal chemistry letters.  2012 August. 22(16):5204-7.
[PubMed]

Brenner C, Ringe D.  Response to the New MCAT: ASBMB Premedical Curriculum.  ASBMB Today.  2012 March. 

Boylston J, Brenner C.  Fhit.  Encyclopedia of Signaling Molecules.  2012. 

Syeda F, Fagan R, Wean M, Avvakumov G, Walker J, Xue S, Dhe-Paganon S, Brenner C.  The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1.  The Journal of biological chemistry.  2011 April. 286(17):15344-51.
[PubMed]

Belenky P, Stebbins R, Bogan K, Evans C, Brenner C.  Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production.  PloS one.  2011. 6(5):e19710.
[PubMed]

Bogan K, Brenner C.  5'-Nucleotidases and their New Roles in NAD+ and Phosphate Metabolism.  New Journal of Chemistry.  2010. 34:845-853.

Evans C, Bogan K, Song P, Burant C, Kennedy R, Brenner C.  NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity.  BMC chemical biology.  2010. 10:2.
[PubMed]

Bogan K, Evans C, Belenky P, Song P, Burant C, Kennedy R, Brenner C.  Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.  The Journal of biological chemistry.  2009 December. 284(50):34861-9.
[PubMed]

Gazzaniga F, Stebbins R, Chang S, McPeek M, Brenner C.  Microbial NAD metabolism: lessons from comparative genomics.  Microbiology and molecular biology reviews : MMBR.  2009 September. 73(3):529-41, Table of Contents.
[PubMed]

Belenky P, Christensen K, Gazzaniga F, Pletnev A, Brenner C.  Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.  The Journal of biological chemistry.  2009 January. 284(1):158-64.
[PubMed]

Brooks L, Heimsath E, Loring G, Brenner C.  FHA-RING ubiquitin ligases in cell division cycle control.  Cellular and molecular life sciences : CMLS.  2008 November. 18:3458-66 + cover.
[PubMed]

Linster C, Adler L, Webb K, Christensen K, Brenner C, Clarke S.  A second GDP-L-galactose phosphorylase in arabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction.  The Journal of biological chemistry.  2008 July. 283(27):18483-92.
[PubMed]

Belenky P, Moga T, Brenner C.  Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.  The Journal of biological chemistry.  2008 March. 283(13):8075-9.
[PubMed]

Fuller R, Bambara R, Baker T, Funnell B, Wahle E, O'Donnell M, Kaiser A, Skarstad K, Konforti B, Maki S, Katayama T, Sekimizu K, Weiner J, Davis R, Rowen L, Goodman M, Spudich J, Pfeffer S, Richardson C, Polaczek P, Calendar R, Kolodner R, Griffith J, Stillman B, Modrich P, Brenner C, Yanofsky C.  A Tribute to Arthur Kornberg, 1918-2007.  Nature Structural and Molecular Biology.  2008. 15:2-17.

Bogan K, Brenner C.  Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.  Annual review of nutrition.  2008. 28:115-30.
[PubMed]

Loring G, Christensen K, Gerber S, Brenner C.  Yeast Chfr homologs retard cell cycle at G1 and G2/M via Ubc4 and Ubc13/Mms2-dependent ubiquitination.  Cell cycle (Georgetown, Tex.).  2008 January. 7(1):96-105.
[PubMed]

Tempel W, Rabeh W, Bogan K, Belenky P, Wojcik M, Seidle H, Nedyalkova L, Yang T, Sauve A, Park H, Brenner C.  Nicotinamide riboside kinase structures reveal new pathways to NAD+.  PLoS biology.  2007 October. 5(10):e263.
[PubMed]

Linster C, Gomez T, Christensen K, Adler L, Young B, Brenner C, Clarke S.  Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants.  The Journal of biological chemistry.  2007 June. 282(26):18879-85.
[PubMed]

Belenky P, Racette F, Bogan K, McClure J, Smith J, Brenner C.  Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.  Cell.  2007 May. 129(3):473-84.
[PubMed]

Robu M, Larson J, Nasevicius A, Beiraghi S, Brenner C, Farber S, Ekker S.  p53 activation by knockdown technologies.  PLoS genetics.  2007 May. 3(5):e78.
[PubMed]

Brenner C.  Histidine Triad Superfamily.  Encyclopedia of Life Sciences.  2007. 

Belenky P, Bogan K, Brenner C.  NAD+ metabolism in health and disease.  Trends in biochemical sciences.  2007 January. 32(1):12-19.
[PubMed]

Wojcik M, Seidle H, Bieganowski P, Brenner C.  Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste.  The Journal of biological chemistry.  2006 November. 281(44):33395-402.
[PubMed]

Parsons A, Lopez A, Givoni I, Williams D, Gray C, Porter J, Chua G, Sopko R, Brost R, Ho C, Wang J, Ketela T, Brenner C, Brill J, Fernandez G, Lorenz T, Payne G, Ishihara S, Ohya Y, Andrews B, Hughes T, Frey B, Graham T, Andersen R, Boone C.  Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast.  Cell.  2006 August. 126(3):611-25.
[PubMed]

Bieganowski P, Seidle H, Wojcik M, Brenner C.  Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions.  The Journal of biological chemistry.  2006 August. 281(32):22439-45.
[PubMed]

Martin J, Magnino F, Schmidt K, Piguet A, Lee J, Semela D, St-Pierre M, Ziemiecki A, Cassio D, Brenner C, Thorgeirsson S, Dufour J.  Hint2, a mitochondrial apoptotic sensitizer down-regulated in hepatocellular carcinoma.  Gastroenterology.  2006 June. 130(7):2179-88.
[PubMed]

Milano S, Kim Y, Stefano F, Benovic J, Brenner C.  Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding.  The Journal of biological chemistry.  2006 April. 281(14):9812-23.
[PubMed]

Brenner C.  Evolution of NAD biosynthetic enzymes.  Structure (London, England : 1993).  2005 September. 13(9):1239-40.
[PubMed]

Seidle H, Bieganowski P, Brenner C.  Disease-associated mutations inactivate AMP-lysine hydrolase activity of Aprataxin.  The Journal of biological chemistry.  2005 June. 280(22):20927-31.
[PubMed]

Chou T, Bieganowski P, Shilinski K, Cheng J, Brenner C, Wagner C.  31P NMR and genetic analysis establish hinT as the only Escherchia coli purine nucleoside phosphoramidase and as essential for growth under high salt conditions.  The Journal of biological chemistry.  2005 April. 280(15):15356-61.
[PubMed]

Parks K, Seidle H, Wright N, Sperry J, Bieganowski P, Howitz K, Wright D, Brenner C.  Altered specificity of Hint-W123Q supports a role for Hint inhibition by ASW in avian sex determination.  Physiological genomics.  2004 December. 20(1):12-14.
[PubMed]

Clements P, Breslin C, Deeks E, Byrd P, Ju L, Bieganowski P, Brenner C, Moreira M, Taylor A, Caldecott K.  The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4.  DNA repair.  2004 November. 3(11):1493-502.
[PubMed]

Bieganowski P, Shilinski K, Tsichlis P, Brenner C.  Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance.  The Journal of biological chemistry.  2004 October. 279(43):44656-66.
[PubMed]

Bieganowski P, Brenner C.  Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans.  Cell.  2004 May. 117(4):495-502.
[PubMed]

Krakowiak A, Pace H, Blackburn G, Adams M, Mekhalfia A, Kaczmarek R, Baraniak J, Stec W, Brenner C.  Biochemical, crystallographic, and mutagenic characterization of hint, the AMP-lysine hydrolase, with novel substrates and inhibitors.  The Journal of biological chemistry.  2004 April. 279(18):18711-6.
[PubMed]

Maiolatesi T, Brenner C.  Chemical and Genetic Methods to Validate Drug Targets in Nonmammalian Organisms.  Oncogenomics: Molecular Approaches to Cancer.  2004. 

Brenner C.  Chemical genomics in yeast.  Genome biology.  2004. 5(9):240.
[PubMed]

Brenner C.  Oncogenomics: Molecular Approaches to Cancer.  2004.

Brenner C.  Precariously on the Cusp of Oncogenomics.  Oncogenomics: Molecular Approaches to Cancer.  2004. 

Kwasnicka D, Krakowiak A, Thacker C, Brenner C, Vincent S.  Coordinate expression of NADPH-dependent flavin reductase, Fre-1, and Hint-related 7meGMP-directed hydrolase, DCS-1.  The Journal of biological chemistry.  2003 October. 278(40):39051-8.
[PubMed]

Brenner C.  Subtleties among subtilases. The structural biology of Kex2 and furin-related prohormone convertases.  EMBO reports.  2003 October. 4(10):937-8.
[PubMed]

Bieganowski P, Pace H, Brenner C.  Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.  The Journal of biological chemistry.  2003 August. 278(35):33049-55.
[PubMed]

Bieganowski P, Brenner C.  The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.  The Journal of biological chemistry.  2003 August. 278(35):33056-9.
[PubMed]

Trapasso F, Krakowiak A, Cesari R, Arkles J, Yendamuri S, Ishii H, Vecchione A, Kuroki T, Bieganowski P, Pace H, Huebner K, Croce C, Brenner C.  Designed FHIT alleles establish that Fhit-induced apoptosis in cancer cells is limited by substrate binding.  Proceedings of the National Academy of Sciences of the United States of America.  2003 February. 100(4):1592-7.
[PubMed]

Pace H, Brenner C.  Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw-Hint heterodimer.  Genome biology.  2003. 4(3):R18.
[PubMed]

Owczarek A, Kaczmarek R, Mikołajczyk B, Wasilewska E, Korczyński D, Baraniak J, Koziołkiewicz M, Stec W, Brenner C.  Stereochemical analysis of diastereomeric 1,3-bis(adenosine-5'-O-phosphorothioyl)glycerols.  Nucleosides, nucleotides & nucleic acids.  2003. 22(8-May):797-9.
[PubMed]

Brenner C.  Catalysis in the nitrilase superfamily.  Current opinion in structural biology.  2002 December. 12(6):775-82.
[PubMed]

Brenner C.  Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases.  Biochemistry.  2002 July. 41(29):9003-14.
[PubMed]

Rubio-Texeira M, Varnum J, Bieganowski P, Brenner C.  Control of dinucleoside polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in Saccharomyces cerevisiae.  BMC molecular biology.  2002 May. 3:7.
[PubMed]

Bieganowski P, Garrison P, Hodawadekar S, Faye G, Barnes L, Brenner C.  Adenosine monophosphoramidase activity of Hint and Hnt1 supports function of Kin28, Ccl1, and Tfb3.  The Journal of biological chemistry.  2002 March. 277(13):10852-60.
[PubMed]

Milano S, Pace H, Kim Y, Brenner C, Benovic J.  Scaffolding Functions of Arrestin-2 Revealed by Crystal Structure and Mutagenesis.  Biochemistry.  2002. 41:3321-3328.

Dahéron L, Zenz T, Siracusa L, Brenner C, Calabretta B.  Molecular cloning of Ian4: a BCR/ABL-induced gene that encodes an outer membrane mitochondrial protein with GTP-binding activity.  Nucleic acids research.  2001 March. 29(6):1308-16.
[PubMed]

Pace H, Brenner C.  Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers.  National Synchrontron Light Source 2000 Activity Report.  2001. 

Varnum J, Baraniak J, Kaczmarek R, Stec W, Brenner C.  Di-, tri- and tetra-5'-O-phosphorothioadenosyl substituted polyols as inhibitors of Fhit: Importance of the alpha-beta bridging oxygen and beta phosphorus replacement.  BMC chemical biology.  2001. 1(1):3.
[PubMed]

Brenner C.  FHIT.  Wiley Encyclopedia of Molecular Medicine.  2001. 2:1274-1275.

Brenner C.  Public Sector Research as an Engine of Growth.  Technology Times.  2001. 22:22.

McLennan A, Barnes L, Blackburn G, Brenner C, Guranowski A, Miller A, Rovira J, Rotllan P, Soria B, Tanner J, Sillero A.  Recent Progress in the Study of the Intracellular Functions of Diadenosine Polyphosphates.  Drug Development Research.  2001. 52:249-259.

Pace H, Brenner C.  The nitrilase superfamily: classification, structure and function.  Genome biology.  2001. 2(1):0001.1-0001.9.
[PubMed]

Boyne J, Yosuf H, Bieganowski P, Brenner C, Price C.  Yeast myosin light chain, Mlc1p, interacts with both IQGAP and class II myosin to effect cytokinesis.  Journal of cell science.  2000 December. 113 Pt 24:4533-43.
[PubMed]

Brenner C.  Condensing the RNA world.  Trends in biochemical sciences.  2000 October. 25(10):486.
[PubMed]

Draganescu A, Hodawadekar S, Gee K, Brenner C.  Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates.  The Journal of biological chemistry.  2000 February. 275(7):4555-60.
[PubMed]

Brenner C.  A Cultivated Taste for Yeast.  Genome Biology.  2000. 1:103.1-103.4.

Pace H, Hodawadekar S, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce C, Brenner C.  Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers.  Current biology : CB.  2000. 10(15):907-17.
[PubMed]

Brenner C.  Fhitness and Cancer in the Mouse.  Trends in Genetics.  2000. 16:294.

Brenner C, Bieganowski P, Pace H, Huebner K.  The histidine triad superfamily of nucleotide-binding proteins.  Journal of cellular physiology.  1999 November. 181(2):179-87.
[PubMed]

Fernandes M, Finnegan A, Siracusa L, Brenner C, Iscove N, Calabretta B.  Characterization of a novel receptor that maps near the natural killer gene complex: demonstration of carbohydrate binding and expression in hematopoietic cells.  Cancer research.  1999 June. 59(11):2709-17.
[PubMed]

Huebner K, Sozzi G, Brenner C, Pierotti M, Croce C.  Fhit Loss in Lung Cancer: Diagnostic and Therapeutic Implications.  Advances in Oncology.  1999. 15:02:3-10 + cover.

Brenner C.  Fhit-Substrate Complexes: A New Paradigm in Reversible Protein Phosphorylation.  Phosphorous, Sulfur, and Silicon.  1999. 144-146:749-752.

Bevan A, Brenner C, Fuller R.  Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system.  Proceedings of the National Academy of Sciences of the United States of America.  1998 September. 95(18):10384-9.
[PubMed]

Pekarsky Y, Campiglio M, Siprashvili Z, Druck T, Sedkov Y, Tillib S, Draganescu A, Wermuth P, Rothman J, Huebner K, Buchberg A, Mazo A, Brenner C, Croce C.  Nitrilase and Fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans.  Proceedings of the National Academy of Sciences of the United States of America.  1998 July. 95(15):8744-9.
[PubMed]

Pace H, Garrison P, Robinson A, Barnes L, Draganescu A, Rösler A, Blackburn G, Siprashvili Z, Croce C, Huebner K, Brenner C.  Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit.  Proceedings of the National Academy of Sciences of the United States of America.  1998 May. 95(10):5484-9.
[PubMed]

Blackburn G, Liu X, Rosler A, Brenner C.  Two hydrolase resistant analogues of diadenosine 5',5"'-P1,P3-triphosphate for studies with Fhit, the human fragile histidine triad protein.  Nucleosides & nucleotides.  1998. 17(3-Jan):301-8.
[PubMed]

Brenner C, Pace H, Garrison P, Robinson A, Rosler A, Liu X, Blackburn G, Croce C, Huebner K, Barnes L.  Purification and crystallization of complexes modeling the active state of the fragile histidine triad protein.  Protein engineering.  1997 December. 10(12):1461-3.
[PubMed]

Brenner C, Garrison P, Gilmour J, Peisach D, Ringe D, Petsko G, Lowenstein J.  Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins.  Nature structural biology.  1997 March. 4(3):231-8.
[PubMed]

Diefenbach-Jagger H, Brenner C, Kemp B, Baron W, McLean J, Martin T, Moseley J.  Arg21 is the preferred kexin cleavage site in parathyroid-hormone-related protein.  European journal of biochemistry / FEBS.  1995 April. 229(1):91-8.
[PubMed]

Brenner C, Bevan A, Fuller R.  Methods for Analyzing the Specificity and Activity of a Prohormone-Processing Enzyme, the Yeast Kex2 Protease (Kexin).  Meth. Enz.  1994. 244:152-167.

Brenner C.  Reducing the Energy Barrier to Crystallization.  Protein Science.  1994. 3:2471-2472.

Brenner C, Bevan A, Fuller R.  One-step site-directed mutagenesis of the Kex2 protease oxyanion hole.  Current biology : CB.  1993 August. 3(8):498-506.
[PubMed]

Angliker H, Wikstrom P, Shaw E, Brenner C, Fuller R.  The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast.  The Biochemical journal.  1993 July. 293 ( Pt 1):75-81.
[PubMed]

Brenner C, Fuller R.  Structural and Enzymatic Characterization of a Purified Prohormone-Processing Enzyme: Secreted, Soluble Kex2 Protease.  Proc. Natl. Acad. Sci..  1992. 89:922-926.

Fuller R, Brenner C, Gluschankof P, Wilcox C.  The Yeast Prohormone-Processing Kex2 Protease, an Enzyme with Specificity for Paired Basic Residues.  Methods in Protein Sequence Analysis.  1991. 

Brenner C, Nakayama N, Goebl M, Tanaka K, Toh-e A, Matsumoto K.  CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae.  Molecular and cellular biology.  1988 August. 8(8):3556-3559.
[PubMed]

Matsumoto K, Nakafuku M, Nakayama N, Miyajima I, Kaibuchi K, Miyajima A, Brenner C, Arai K, Kaziro Y.  The role of G proteins in yeast signal transduction.  Cold Spring Harbor symposia on quantitative biology.  1988. 53 Pt 2:567-75.
[PubMed]

Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K.  GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction.  Cell.  1987 September. 50(7):1011-1019.
[PubMed]

Brake A, Brenner C, Najarian R, Laybourn P, Merryweather J.  Structure of Genes Encoding Precursors of the Yeast Peptide Mating Pheromone a-Factor.  Protein Transport and Secretion.  1985. 
[Link]

Date Last Modified: 06/19/2014 - 08:17:21