Biochemistry

Pamela Geyer, PhD

Portrait

Professor of Biochemistry
Professor of Obstetrics and Gynecology

Contact Information

Primary Office: 3135E MERF
Iowa City, IA 52242
Primary Office Phone: 319-335-6953

Email: pamela-geyer@uiowa.edu
Web: Geyer Laboratory

Education

BS, McGill University, Montreal P.Q.
PhD, Ohio State University, Columbus, OH

Post Doctoral, Dept of Biology, Johns Hopkins University, Baltimore, MD
Post Doctoral, Dept of Biology, Johns Hopkins University, Baltimore, MD

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Biochemistry PhD
Interdisciplinary Graduate Program in Genetics
Interdisciplinary Graduate Program in Molecular and Cellular Biology
Interdisciplinary Graduate Program in Neuroscience
Interdisciplinary Graduate Program in Translational Biomedicine
Medical Scientist Training Program

Research Summary

The Geyer laboratory is interested in understanding mechanisms involved in genome organization and gene regulation. Two areas are currently being studied, insulators and nuclear lamina function. Insulators are a specialized class of DNA regulatory elements that have a conserved role in chromosome organization, dividing chromosomes into independent functional domains. These elements shelter genes from the surrounding positive and negative regulatory effects by blocking interactions between enhancers, silencers and promoters. Such properties have made insulators favorable candidates to improve strategies for gene therapy. While gene therapy is a promising technology that delivers therapeutic genes to a target tissue, successful application of this approach faces many challenges, including the cross regulation of endogenous genes by DNA regulatory elements in the vector. Insulators may prevent such undesirable effects. Studies in the Geyer lab include determination of the molecular mechanisms used by insulators to prevent interactions between enhancers, silencers and promoters and the identification of novel insulators. Combinations of insulators that employ different regulatory mechanisms may provide optimal protection of transgenes from the position effects of the surrounding chromatin and prevent sequences in the vector from mis-regulating endogenous genes at the site of genomic insertion. As such, insights into insulator mechanisms will allow advances in improving strategies for gene therapy and treatment of human disease. The nuclear lamina is an extensive protein network that lines the inner surface of the nuclear membrane. This network consists of intermediate filament proteins, called lamins, and associated inner nuclear membrane proteins, such as the LEM domain proteins. LEM domain genes make essential contributions to the function of the lamina, as mutations in these genes cause human diseases, known as laminopathies. For example, mutations in the genes that encode emerin and MAN1 cause Emery-Dreifuss Muscular Dystrophy and Buschke-Ollendorf Syndrome, respectively. Interestingly, these diseases are associated with tissue-specific pathologies, even though LEM domain genes are broadly expressed. To understand mechanisms underlying such human diseases, the Geyer lab is investigating the role of LEM domain proteins in lamina function, using Drosophila as a model organism. A molecular genetic approach is being taken to determine the contributions that individual LEM domain proteins make to nuclear lamina function.

Center, Program and Institute Affiliations

Institute for Clinical and Translational Science

Selected Publications

Show All

Barton L, Wilmington S, Martin M, Skopec H, Lovander K, Pinto B, Geyer P.  Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila, Genetics accepted..  Genetics Society of America;  2014. 

Soshnev A, Baxley R, Manak J, Tan K, Geyer P,  .  The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary.  Development.  2013 September. 140(17):3613-23.
[PubMed]

Barton L, Pinto B, Wallrath L, Geyer P.  The Drosophila nuclear lamina protein otefin is required for germline stem cell survival.  Developmental cell.  2013 June. 25(6):645-54.
[PubMed]

Hohl A, Thompson M, Soshnev A, Wu J, Morris J, Hsieh T, Wu C, Geyer P.  Restoration of topoisomerase 2 function by complementation of defective monomers in Drosophila.  Genetics.  2012 November. 192(3):843-56.
[PubMed]

Shoshnev A, He B, Baxley R, Jiang N, Hart C, Tan K, Geyer P.  Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary.  Nucleic Acids Research .  2012 July. 40(12).
[PubMed]

Baxley R, Soshnev A, Koryakov D, Zhimulev I, Geyer P.  The role of the Suppressor of Hairy-wing insulator protein in Drosophila oogenesis.  Developmental biology.  2011 August. 356(2):398-410.
[PubMed]

Geyer P, Vitalini M, Wallrath L.  Nuclear organization: taking a position on gene expression.  Current opinion in cell biology.  2011 June. 23(3):354-9.
[PubMed]

Dialynas G, Speese S, Budnik V, Geyer P, Wallrath L.  The role of Drosophila Lamin C in muscle function and gene expression.  Development (Cambridge, England).  2010 September. 137(18):3067-77.
[PubMed]

Schulze S, Curio-Penny B, Speese S, Dialynas G, Cryderman D, McDonough C, Nalbant D, Petersen M, Budnik V, Geyer P, Wallrath L.  A comparative study of Drosophila and human A-type lamins.  PloS one.  2009. 4(10):e7564.
[PubMed]

Pinto B, Wilmington S, Hornick E, Wallrath L, Geyer P.  Tissue-specific defects are caused by loss of the Drosophila MAN1 LEM domain protein.  Genetics.  2008 September. 180(1):133-45.
[PubMed]

Date Last Modified: 06/07/2014 - 21:56:23