Anatomy and Cell Biology

Masataka Kawai, PhD

Portrait

Professor of Anatomy and Cell Biology

Contact Information

Primary Office: 1-324 Bowen Science Building
Iowa City, IA 52242

Office:  
,  
Phone: 319-335-8101

Email: masataka-kawai@uiowa.edu

Education

BA, Science, University of Tokyo, Tokyo, Japan
Physiology Course, Marine Biological Laboratory
PhD, Biology, Princeton University

Post Doctorate, Columbia University

Education/Training Program Affiliations

Biosciences Graduate Program
Department of Anatomy and Cell Biology Graduate Program

Research Summary

Molecular mechanisms of contraction in striated muscles, and the mechanisms of hypertrophic and dilated cardiomyopathy (HCM, DCM).

To study the molecular mechanisms of contraction, it is essential that force can be measured, hence “skinned” single muscle fibers are used, in which the plasma membrane is chemically removed. To learn the function of individual amino acid residues in a contractile protein, it is necessary to replace it with a recombinant protein. We developed a system, in which the thin filament of cardiac fibers is selectively removed by gelsolin, and reconstituted by actin monomers, followed by regulatory proteins tropomyosin (Tpm) and troponin (Tn). Because this procedure does not require any adverse conditions (extreme ionic strength, pH, temperature, etc), the reproducibility of active tension is 104±3%; similarly, the reproducibility of other contractile parameters are excellent. This technique has numerous applications. One can study the actin-myosin interaction without Tpm/Tn; we found that Tpm/Tn increases force/cross-bridge by 50% indicating that the actin-Tpm interaction allosterically activates the actin-myosin interaction. This technique has also been used to study mutant proteins to establish the structure-function relationships. It was further used to learn molecular pathogenesis based on thin filament proteins (actin, Tpm, Tn) that are known to cause HCM and DCM in humans. The technique makes it possible to obtain information on early events of pathogenesis, ie, before complex signaling cascades ensue. In Tpm mutations that cause HCM, we found that tension at pCa 8 increases from 10% (WT) to 30% to cause diastolic problem, whereas in Tpm mutations that cause DCM, tension at pCa 8 and pCa 4.5 both decrease to cause systolic problem.

For complete publications, press brown switch (show all) down below

All Publications

Wang L, Bahadir A, Kawai M.  High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges..  J Muscle Res Cell Motil .  2015 April. 36:(in press).
[PubMed]

Kawai M, Lamb G, Galler S.  Editorial on EMC 2014 special issue..  J Muscle Res Cell Motil.  2015 February. 36(1):1-3.
[Link]

Bai F, Caster H, Dawson J, Kawai M.  The immediate effect of HCM causing actin mutants E99K and A230V on actin-Tm-myosin interaction in thin-filament reconstituted myocardium.  J Mol Cell Cardiol.  2015 February. 79:123-132.
[Link]

Wang L, Sadayappan S, Kawai M.  Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-bridge Cycle’s Elementary Steps in a Site-specific Manner.  Pros One.  2014. 
[Link]

Wang L, Ji X, Barefield D, Sadayappan S, Kawai M.  Phosphorylation of cMyBP-C affects contractile mechanisms in a site specific manner.  Biophys J.  2014. 106:1112-1122.
[Link]

Bai F, Caster H, Rubenstein P, Dawson J, Kawai M.  Using baculovirus/insect cell expressed recombinant actin to study the molecular pathogenesis of HCM caused by actin mutation A331P.  J Mol Cell Cardiol.  2014. 74:64-75.
[Link]

Wang L, Kawai M.  A re-interpretation of the rate of tension redevelopment (kTR) in active muscle. .  J Muscle Res Cell Motil.  2013. 34:407-415.
[PubMed]

Bai F, Wang L, Kawai M.  A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium.  J Muscle Res Cell Motil.  2013. 34:295-310.
[PubMed]

Bai F, Caster H, Pinto J, Kawai M.  Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210.  Biophys J.  2013. 104(9):1979-1988.

Wang L, Muthu P, Szczesna-Cordary D, Kawai M.  Characterizations of myosin essential light chain's N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations.  J Muscle Res Cell Motil.  2013. 34(9):93-105.
[PubMed]

Wang L, Muthu P, Szczesna-Cordary D, Kawai M.  Diversity and similarity of motor function and cross-bridge kinetics in papillary muscles of transgenic mice carrying myosin regulatory light chain mutations D166V and R58Q.  J Molec Cell Cardiol.  2013. 62(153-163).
[PubMed]

Iorga B, Wang L, Stehle R, Pfitzer G, Kawai M.  ATP binding and cross-bridge detachment steps during full Ca2+ activation: Comparison of myofibril and muscle fibre mechanics by sinusoidal analysis.  J Physiol (Lond).  2012. 590.14:3361–3373.
[PubMed]

Bai F, Groth H, Kawai M.  DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges.  PLoS ONE.  2012. 7:(e4741) 1-12.
[PubMed]

Candau R, Kawai M.  Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.  J Muscle Res Cell Motil.  2011. 32:315-326.
[PubMed]

Bai F, Weis A, Takeda A, Chase B, Kawai M.  Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations.  Biophys J.  2011. 100:1014-1023.
[PubMed]

Muthus P, Wang L, Yuan C, Kazmierczak K, Huang W, Hernandez O, Kawai M, Irving T, Szczesna-Cordary D.  Structural and functional aspects of myosin ELC-mediated cardiac muscle contraction.  FASEB J .  2011. 11-191973:1-12.
[PubMed]

Oguchi Y, Ishizuka J, Hitchcock-DeGregori  S, Ishiwata S, Kawai M.  The role of tropomyosin domains in cooperative activation of the actin-myosin interaction.  J Mol Biol.  2011. 414:667-680.
[PubMed]

Kawai M, Candau R.  Muscle contraction and supplying ATP to muscle cells.  IOS Press.  2010. 

Lu X, Heeley D, Smillie L, Kawai M.  The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres.  J Muscle Res Cell Motil.  2010. 31:93–109.
[PubMed]

Kawai M, Lu X, Hitchcock-DeGregori  S, Stanton K, Wandling M.  Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium.  J Biophysics.  2009. 2009:1-17.
[PubMed]

Kawai M, Halvorson H.  Force transients and minimum cross-bridge models in muscular contraction.  J Muscle Res Cell Motil.  2007. 28:371-395.
[PubMed]

Kawai M, Kido T, Vogel M, Fink R, Ishiwata S.  Temperature change does not affect force between regulated actin filaments and HMM in single molecule experiments.  J Physiol (Lond).  2006. 574.3:877–887.
[PubMed]

Lu X, Tobacman L, Kawai M.  Temperature dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant.  Biophys J.  2006. 91(11):4230-4240.
[PubMed]

Kawai M, Ishiwata S.  Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation.  J Muscle Res Cell Motil .  2006. 27:455-468.
[PubMed]

Galler S, Wang B, Kawai M.  Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles.  Biophys J.  2005. 89:3248-3260.
[PubMed]

Lu X, Bryant M, Bryan K, Rubenstein P, Kawai M.  Role of the N-terminal negative charge of actin in cross-bridge kinetics and force generation in reconstituted bovine myocardium.  J Physiol (Lond).  2005. 564.1:65-82.
[PubMed]

Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M.  The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in bovine myocardium.  J Physiol (Lond).  2004. 556.2:637-649.
[PubMed]

Lu X, Tobacman L, Kawai M.  Effects of tropomyosin internal deletion Δ23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium.  J Physiol (Lond) .  2003. 553.2:457-471.
[PubMed]

Kawai M.  What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres?.  J Muscle Res Cell Motil.  2003. 24:127-138.
[PubMed]

Fujita H, Sasaki D, Ishiwata S, Kawai M.  Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins..  Biophys J.  2002. 82(2):915-928.
[Link]

Fujita H, Kawai M.  Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium.  J Physiol (Lond).  2002. 539.1:267-276.

Ding W, Fujita H, Kawai M.  The length of cooperative units on the thin filament in rabbit psoas muscle fibres.  Experimental Physiology.  2002. 87.6:691-697.
[Link]

Wang G, Kawai M.  Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibers..  J Phys.  2001. 531(1):219-234.
[Link]

Kawai M, Kawaguchi K, Saito M, Ishiwata S.  Temperature change does not affect force between single actin filaments and HMM from rabbit muscles..  Biophys J.  2000. 78:3112-3119.
[Link]

Wang G, Ding W, Kawai M.  Does thin filament compliance diminish the cross-bridge kinetics? A study in rabbit psoas fibers..  Biophys J.  1999. 76:978-984.
[Link]

Kawai M.  Comments on the paper by Dr. David Smith entitled, "A strain-dependent ratchet model for [phosphate]-and [ATP]-dependent muscle contraction..  J Muscle Res Cell Mot.  1998. 19:713-715.
[Link]

Kawai M.  Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibres..  Biophys J.  1997. 73:878-894.

Wang G, Kawai M.  Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers..  Biophys J.  1996. 71:1450-1461.

Zhao Y, Kawai M.  Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross-bridges in porcine myocardium..  Heart Circ Physiol.  1996. 271(4):H1394-1406.
[PubMed]

Murphy K, Zhao Y, Kawai M.  Molecular forces involved in force generation during skeletal muscle contraction..  J Exptl Biol.  1996. 199:2565-2571.
[Link]

Zhao Y, Swamy P, Humphries K, Kawai M.  The effect of partial extraction of troponin C on the elementary steps of the cross-bridge cycle in rabbit psoas fibers..  Biophys J.  1996. 71:2759-2773.
[Link]

Kawai M, Zhao Y.  Nucleotide binding site of myosin head is under the influence of thin filament proteins..  Biophys J.  1995 April. 68 (4 Suppl):216s.
[Link]

Zhao Y, Kawai M.  The hydrophobic interaction between actin and myosin underlies the mechanism of force generation by cross-bridges..  Biophys J.  1995 April. 68 (4 Suppl):332s.
[Link]

Raucher D, Fajer E, Sar C, Hideg K, Zhao Y, Kawai M, Fajer P.  A novel electron paramagnetic resonance spin label and its application to study the cross-bridge cycle..  Biophys J.  1995. 
[Link]

Zhao Y, Kawai M.  BDM affects nucleotide binding and force generation steps of the cross-bridge cycle in rabbit psoas muscle fibers..  Am Physiol (Cell Physiol).  1994. 266(35):C437-C447.
[Link]

Zhao Y, Kawai M.  Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers..  Biophys J.  1994. 67:1655-1668.
[Link]

Schraeger J, Canby C, Rongish B, Kawai M, Tomanek R.  Normal left ventricular diastolic compliance following regression of hypertrophy. .  J Cardiovasc Pharm .  1994. 23(3):349-357.
[Link]

Kawai M, Zhao Y.  Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers..  Biophys J.  1993. 65(2):638-651.
[Link]

Kawai M, Saeki Y, Zhao Y.  Cross-bridge scheme and kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret..  Circ Res.  1993. 73:35-50.
[Link]

Kawai M, Zhao Y, Halvorson H.  Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers. .  Plenum Press.  1993. 
[Link]

Kawai M.  Kawai's response to Horiuti and Sakoda..  Biophys J.  1993. 65:2263-2264.
[Link]

Zhao Y, Kawai M, Wray J.  The effect of lattice spacing change on cross-bridge kinetics in rabbit psoas fibers..  Plenum Press.  1993. 
[Link]

Zhao Y, Kawai M.  The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. Elementary steps affected by the spacing change..  Biophys J.  1993. 64(1):197-210.
[Link]

Kawai M, Wray J, Zhao Y.  The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width..  Biophys J.  1993. 64:187-196.
[Link]

Saeki Y, Kawai M, Zhao Y.  Comparison of cross-bridge dynamics between intact and skinned myocardium from ferret right ventricles..  Circ Res .  1991. 68(3):772-781.
[PubMed]

Kawai M, Halvorson H.  Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned rabbit psoas muscle..  Biophys J.  1991. 59(2):329-342.
[PubMed]

Tawada K, Kawai M.  Covalent cross-linking of single muscle fibers from rabbit psoas increases oscillatory power..  Biophys J.  1990. 57(3):643-647.
[Link]

Kawai M, Wray J, Guth K.  Effect of ionic strength on cross-bridge kinetics as studied by sinusoidal analysis, ATP hydrolysis rate, and X-ray diffraction techniques in chemically skinned rabbit psoas fibers..  J Muscle Res Cell Motil .  1990. 11(5):392-402.
[PubMed]

Marcussen B, Kawai M.  Role of MgATP and inorganic phosphate ions in cross-bridge kinetics in insect (Lethocerus Colossicus) flight muscle..  Wiley-Liss.  1990. 327:805-813.
[Link]

Kawai M, Halvorson H.  Effect of MgATP and MgADP on the cross-bridge kinetics in chemically skinned rabbit psoas fibers: An interpretation of a fast exponential process (C)..  Alan R Liss.  1989. 

Feit H, Kawai M, Mostafapour A.  Increased resistance of the collagen in avian dystrophic muscle to collagenolytic attack. Evidence for increased crosslinking..  Muscle and Nerve.  1989. 12(6):476-485.
[Link]

Kawai M, Halvorson H.  Role of MgATP in the crossbridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process (C)..  Biophys J.  1989. 55:595-603.
[Link]

Feit H, Kawai M, Mostafapour A.  The role of collagen crosslinking in the increased stiffness of avian dystrophic muscle..  Muscle and Nerve.  1989. 12:486-492.
[Link]

Kawai M, Guth K, Cornacchia T.  The role of monovalent phosphate anions in the cross-bridge kinetics of chemically skinned rabbit psoas fibers..  Plenum Publishing Co..  1988. 

Kawai M, Guth K, Winnikes K, Haist C, Ruegg J.  The effect of inorganic phosphate on the ATP hydrolysis rate and the tension transients in chemically skinned rabbit psoas fibers..  Pflugers Archiv.  1987. 408(1):1-9.
[Link]

Kawai M.  The role of orthophosphate in cross-bridge kinetics in chemically skinned rabbit psoas fibers as detected with sinusoidal and step length alterations..  J Muscle Res Cell Mot.  1986 October. 7(5):421-434.
[Link]

Diamond M, Brandt P, Kawai M.  Comments on the "Critical dependence of calcium-activated force on width in highly compressed fibers of the frog.".  Biophys J.  1986. 50:1215-1216.

Feit H, Hammon K, Kawai M.  Collagen in chemically skinned, extracted dystrophic myofibers..  Muscle and Nerve.  1985. 8(9):806-807.
[PubMed]

Kawai M, Schulman M.  Cross-bridge kinetics in chemically skinned rabbit psoas fibers when the actin-myosin lattice spacing is altered by dextran T-500..  J Muscle Res Cell Mot.  1985. 6(3):313-332.

Feit H, Kawai M.  Physiological and biochemical characterization of avian dystrophic muscle reveals alterations of collagen..  Annals of the New York Academy of Sciences.  1985. 460:431-433.

Feit H, Kawai M, Schulman M.  Stiffness and contractile properties of avian normal and dystrophic muscle bundles as measured by sinusoidal length perturbations..  Muscle and Nerve.  1985. 8:503-510.
[PubMed]

Kawai M.  The mechanism of muscular contraction: Frequency response function of skinned fibers and an interpretation..  Special Publication by the Anniversary Committee, Tokyo University.  1985. 

Kawai M, Schachat F.  Differences in the transient response to fast and slow skeletal muscle fibers: correlations between complex modulus and myosin light chains. .  Biophys J.  1984 June. 45(6):1145-1151.
[Link]

Brandt P, Diamond M, Gluck B, Kawai M, Schachat F.  Molecular basis of cooperativity in vertebrate muscle thin filaments..  Carlsberg Research Communication (Copenhagen).  1984. 49:155-167.

Kawai M, Brandt P, Cox R.  The role of Ca2+ in cross-bridge kinetics in chemically skinned rabbit psoas fibers..  Plenum Press.  1984. 

Kawai M.  Correlation between exponential processes and cross-bridge kinetics..  Raven Press.  1982. 

Brandt P, Cox R, Kawai M, Robinson T.  Regulation of tension in skinned muscle fibers: effect of cross-bridge rate constants on apparent Ca2+sensitivity..  J Gen Physiol.  1982. 79(6):997-1016.

Cox R, Kawai M.  Alternate energy transduction routes in chemically skinned rabbit psoas muscle fibers: a further study of the effect of MgATP over a wide concentration range..  J Muscle Res Cell Motil.  1981 June. 2(2):203-214.

Kawai M, Cox R, Brandt P.  Effect of Ca ion concentration on cross-bridge kinetics in rabbit psoas fibers. Evidence for the presence of two Ca-activated states of thin filament..  Biophys J.  1981. 35(2):375-384.
[Link]

Kawai M, Brandt P.  Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog, and crayfish..  J Muscle Res Cell Motil.  1980 September. 1(3):279-303.
[PubMed]

Brandt P, Cox R, Kawai M.  Can the binding Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension of relationship of skeletal muscle?.  Proc Natl Acad Sci USA.  1980 August. 77(8):4717-4720.

Cox R, Kawai M, Karlin A, Brandt P.  Voltage fluctuations at the frog sartorius motor endplate produced by a covalently attached activator..  J Membrane Biol.  1979 December. 51(2):145-159.
[Link]

Kawai M.  Effect of MgATP on cross-bridge kinetics in chemically skinned rabbit psoas fibers as measured by sinusoidal analysis technique..  University of Tokyo Press.  1979. 

Kawai M, Brandt P.  Mechanochemistry of actin-myosin interaction..  Academic Press.  1979. 

Kawai M.  Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed..  Biophys J.  1978 April. 22(1):97-103.
[PubMed]

Kawai M, Brandt P.  Studies of cross-bridge behavior when the muscle length is changed in a sinusoidal manner. .  1978. 

Kawai M, Brandt P.  Effect of MgATP on stiffness measured at two frequencies in Ca activated muscle fibers..  Proc Natl Acad Sci USA.  1977 September. 74(9):4073-4075.
[Link]

Kawai M, Brandt P, Orentlicher M.  Dependence of energy transduction in intact skeletal muscles on the time in tension. .  1977 May. 18(2):161-172.
[Link]

Kawai M, Brandt P.  Two rigor states in skinned crayfish single muscle fibers..  J Gen Physiol.  1976 September. 68(3):267-280.
[Link]

Kawai M, Kuntz I.  Optical diffraction studies of muscle fibers..  Biophys J.  1973 September. 13(9):857-876.
[Link]

Date Last Modified: 08/27/2015 - 10:55:26